The jaxrs-jwt quickstart demonstrates a Jakarta REST secured application using JSON Web Tokens (JWT) with Elytron.

What is it?

This quickstart demonstrates how to secure a Jakarta REST service with JWTs using the Elytron subsystem.

There are 4 resource endpoints, plus another one for generating JWTs.

  • /rest/public - Requires no authentication.

  • /rest/customer - Can be accessed by users with customer role authority.

  • /rest/admin - Can be accessed by users with admin role authority.

  • /rest/claims - Can be accessed by any authenticated user and demonstrates how to extract token claims.

  • /rest/token - POST endpoint for generating tokens from provided credentials.

Note
This quickstart asserts only few JWT claims for demonstration purposes. In your application, you should use all claims required by the specification you are using.

System Requirements

The application this project produces is designed to be run on WildFly Application Server 33 or later.

All you need to build this project is Java 11.0 (Java SDK 11) or later and Maven 3.6.0 or later. See Configure Maven to Build and Deploy the Quickstarts to make sure you are configured correctly for testing the quickstarts.

Use of the WILDFLY_HOME and QUICKSTART_HOME Variables

In the following instructions, replace WILDFLY_HOME with the actual path to your WildFly installation. The installation path is described in detail here: Use of WILDFLY_HOME and JBOSS_HOME Variables.

When you see the replaceable variable QUICKSTART_HOME, replace it with the path to the root directory of all of the quickstarts.

Back Up the WildFly Standalone Server Configuration

Before you begin, back up your server configuration file.

  1. If it is running, stop the WildFly server.

  2. Back up the WILDFLY_HOME/standalone/configuration/standalone.xml file.

After you have completed testing this quickstart, you can replace this file to restore the server to its original configuration.

Start the WildFly Standalone Server

  1. Open a terminal and navigate to the root of the WildFly directory.

  2. Start the WildFly server with the default profile by typing the following command.

    $ WILDFLY_HOME/bin/standalone.sh 
    Note
    For Windows, use the WILDFLY_HOME\bin\standalone.bat script.

Configure the Server

You configure the security domain by running JBoss CLI commands. For your convenience, this quickstart batches the commands into a configure-elytron.cli script provided in the root directory of this quickstart.

  1. Before you begin, make sure you do the following:

  2. Review the configure-elytron.cli file in the root of this quickstart directory. This script adds the configuration that enables Elytron security for the quickstart deployment. Comments in the script describe the purpose of each block of commands.

    Important
    This script contains placeholder PEM public key to make the deployment of this quickstart easy. DO not use this key for anything but testing purposes! You must generate your own key pair for your own application.
  3. Open a new terminal, navigate to the root directory of this quickstart, and run the following command, replacing WILDFLY_HOME with the path to your server:

    $ WILDFLY_HOME/bin/jboss-cli.sh --connect --file=configure-elytron.cli
    Note
    For Windows, use the WILDFLY_HOME\bin\jboss-cli.bat script.
  4. Stop the WildFly server.

Review the Modified Server Configuration

After stopping the server, open the WILDFLY_HOME/standalone/configuration/standalone.xml file and review the changes.

  1. The following token-realm was added to the security-realms element in the elytron subsystem.

    <token-realm name="jwt-realm" principal-claim="sub">
        <jwt issuer="quickstart-jwt-issuer" audience="jwt-audience" key-store="jwt-key-store" certificate="jwt-auth"/>
    </token-realm>
  2. The following security-domain was added, which uses the jwt-realm.

    <security-domain name="jwt-domain" default-realm="jwt-realm" permission-mapper="default-permission-mapper">
        <realm name="jwt-realm" role-decoder="groups-to-roles"/>
    </security-domain>
  3. The following HTTP authentication factory was added, which uses BEARER_TOKEN and the jwt-realm.

    <http-authentication-factory name="jwt-http-authentication" http-server-mechanism-factory="global" security-domain="jwt-domain">
        <mechanism-configuration>
            <mechanism mechanism-name="BEARER_TOKEN">
                <mechanism-realm realm-name="jwt-realm"/>
            </mechanism>
        </mechanism-configuration>
    </http-authentication-factory>
  4. The application security domain in the Undertow subsystem is configured to use the new HTTP authentication factory.

    <application-security-domains>
        <application-security-domain name="other" http-authentication-factory="jwt-http-authentication"/>
    </application-security-domains>
  5. Finally, the application security domain in the EJB subsystem is configured to use the jwt-domain.

    <application-security-domains>
        <application-security-domain name="other" security-domain="jwt-domain"/>
    </application-security-domains>

Build and Deploy the Quickstart

  1. Make sure WildFly server is started.

  2. Open a terminal and navigate to the root directory of this quickstart.

  3. Type the following command to build the quickstart.

    $ mvn clean package
  4. Type the following command to deploy the quickstart.

    $ mvn wildfly:deploy

This deploys the jaxrs-jwt/target/jaxrs-jwt.war to the running instance of the server.

You should see a message in the server log indicating that the archive deployed successfully.

Access the Application

The JwtAuthIT test shows how a client can authenticate with the server.

Run the Integration Tests

This quickstart includes integration tests, which are located under the src/test/ directory. The integration tests verify that the quickstart runs correctly when deployed on the server.

Follow these steps to run the integration tests.

  1. Make sure WildFly server is started.

  2. Make sure the quickstart is deployed.

  3. Type the following command to run the verify goal with the integration-testing profile activated.

    $ mvn verify -Pintegration-testing 

Undeploy the Quickstart

When you are finished testing the quickstart, follow these steps to undeploy the archive.

  1. Make sure WildFly server is started.

  2. Open a terminal and navigate to the root directory of this quickstart.

  3. Type this command to undeploy the archive:

    $ mvn wildfly:undeploy

Restore the WildFly Standalone Server Configuration

You can restore the original server configuration using either of the following methods.

Restore the WildFly Standalone Server Configuration by Running the JBoss CLI Script

  1. Start the WildFly server as described above.

  2. Open a new terminal, navigate to the root directory of this quickstart, and run the following command, replacing WILDFLY_HOME with the path to your server:

    $ WILDFLY_HOME/bin/jboss-cli.sh --connect --file=restore-configuration.cli
    Note
    For Windows, use the WILDFLY_HOME\bin\jboss-cli.bat script.

This script reverts the changes made to the undertow and elytron subsystem.You should see the following result when you run the script.

The batch executed successfully
process-state: reload-required

Restore the WildFly Standalone Server Configuration Manually

When you have completed testing the quickstart, you can restore the original server configuration by manually restoring the backup copy the configuration file.

  1. If it is running, stop the WildFly server.

  2. Replace the WILDFLY_HOME/standalone/configuration/standalone.xml file with the backup copy of the file.

Debug the Application

If you want to debug the source code of any library in the project, run the following command to pull the source into your local repository. The IDE should then detect it.

$ mvn dependency:sources

Building and running the quickstart application with provisioned WildFly server

Instead of using a standard WildFly server distribution, you can alternatively provision a WildFly server to deploy and run the quickstart, by activating the Maven profile named provisioned-server when building the quickstart:

$ mvn clean package -Pprovisioned-server

The provisioned WildFly server, with the quickstart deployed, can then be found in the target/server directory, and its usage is similar to a standard server distribution, with the simplification that there is never the need to specify the server configuration to be started.

The server provisioning functionality is provided by the WildFly Maven Plugin, and you may find its configuration in the quickstart pom.xml:

        <profile>
            <id>provisioned-server</id>
            <build>
                <plugins>
                    <plugin>
                        <groupId>org.wildfly.plugins</groupId>
                        <artifactId>wildfly-maven-plugin</artifactId>
                        <configuration>
                            <discover-provisioning-info>
                                <version>${version.server}</version>
                            </discover-provisioning-info>
                            <!--
                                Rename the output war to ROOT.war before adding it to the server, so that the
                                application is deployed in the root web context.
                            -->
                            <name>ROOT.war</name>
                            <add-ons>...</add-ons>
                        </configuration>
                        <executions>
                            <execution>
                                <goals>
                                    <goal>package</goal>
                                </goals>
                            </execution>
                        </executions>
                    </plugin>
                    ...
                </plugins>
            </build>
        </profile>

The plugin uses WildFly Glow to discover the feature packs and layers required to run the application, and provisions a server containing those layers.

If you get an error or the server is missing some functionality which cannot be auto-discovered, you can download the WildFly Glow CLI and run the following command to see more information about what add-ons are available:

wildfly-glow show-add-ons
Note

Since the plugin configuration above deploys quickstart on root web context of the provisioned server, the URL to access the application should not have the /jaxrs-jwt path segment after HOST:PORT.

Run the Integration Tests with a provisioned server

The integration tests included with this quickstart, which verify that the quickstart runs correctly, may also be run with a provisioned server.

Follow these steps to run the integration tests.

  1. Make sure the server is provisioned.

    $ mvn clean package -Pprovisioned-server
  2. Start the WildFly provisioned server, this time using the WildFly Maven Plugin, which is recommended for testing due to simpler automation. The path to the provisioned server should be specified using the jbossHome system property.

    $ mvn wildfly:start -DjbossHome=target/server 
  3. Type the following command to run the verify goal with the integration-testing profile activated, and specifying the quickstart’s URL using the server.host system property, which for a provisioned server by default is http://localhost:8080.

    $ mvn verify -Pintegration-testing -Dserver.host=http://localhost:8080 
  4. Shutdown the WildFly provisioned server, this time using the WildFly Maven Plugin too.

    $ mvn wildfly:shutdown

Building and running the quickstart application with OpenShift

Build the WildFly Source-to-Image (S2I) Quickstart to OpenShift with Helm Charts

On OpenShift, the S2I build with Apache Maven uses an openshift Maven profile to provision a WildFly server, deploy and run the quickstart in OpenShift environment.

The server provisioning functionality is provided by the WildFly Maven Plugin, and you may find its configuration in the quickstart pom.xml:

        <profile>
            <id>openshift</id>
            <build>
                <plugins>
                    <plugin>
                        <groupId>org.wildfly.plugins</groupId>
                        <artifactId>wildfly-maven-plugin</artifactId>
                        <configuration>
                            <discover-provisioning-info>
                                <version>${version.server}</version>
                                <context>cloud</context>
                            </discover-provisioning-info>
                            <!--
                                The parent POM's 'openshift' profile renames the output archive to ROOT.war so that the
                                application is deployed in the root web context. Add ROOT.war to the server.
                            -->
                            <filename>ROOT.war</filename>
                            <add-ons>...</add-ons>
                        </configuration>
                        <executions>
                            <execution>
                                <goals>
                                    <goal>package</goal>
                                </goals>
                            </execution>
                        </executions>
                    </plugin>
                    ...
                </plugins>
            </build>
        </profile>

You may note that unlike the provisioned-server profile it uses the cloud context which enables a configuration tuned for OpenShift environment.

The plugin uses WildFly Glow to discover the feature packs and layers required to run the application, and provisions a server containing those layers.

If you get an error or the server is missing some functionality which cannot be auto-discovered, you can download the WildFly Glow CLI and run the following command to see more information about what add-ons are available:

wildfly-glow show-add-ons

Getting Started with WildFly for OpenShift and Helm Charts

This section contains the basic instructions to build and deploy this quickstart to WildFly for OpenShift or WildFly for OpenShift Online using Helm Charts.

Prerequisites

  • You must be logged in OpenShift and have an oc client to connect to OpenShift

  • Helm must be installed to deploy the backend on OpenShift.

Once you have installed Helm, you need to add the repository that provides Helm Charts for WildFly.

$ helm repo add wildfly https://docs.wildfly.org/wildfly-charts/
"wildfly" has been added to your repositories
$ helm search repo wildfly
NAME                    CHART VERSION   APP VERSION     DESCRIPTION
wildfly/wildfly         ...             ...            Build and Deploy WildFly applications on OpenShift
wildfly/wildfly-common  ...             ...            A library chart for WildFly-based applications

Deploy the WildFly Source-to-Image (S2I) Quickstart to OpenShift with Helm Charts

Log in to your OpenShift instance using the oc login command. The backend will be built and deployed on OpenShift with a Helm Chart for WildFly.

Navigate to the root directory of this quickstart and run the following command:

$ helm install jaxrs-jwt -f charts/helm.yaml wildfly/wildfly --wait --timeout=10m0s 
NAME: jaxrs-jwt
...
STATUS: deployed
REVISION: 1

This command will return once the application has successfully deployed. In case of a timeout, you can check the status of the application with the following command in another terminal:

oc get deployment jaxrs-jwt

The Helm Chart for this quickstart contains all the information to build an image from the source code using S2I on Java 17:

Unresolved directive in ../shared-doc/helm-deploy-project.adoc - include::/home/runner/work/quickstart/quickstart/jaxrs-jwt/charts/helm.yaml[]

This will create a new deployment on OpenShift and deploy the application.

If you want to see all the configuration elements to customize your deployment you can use the following command:

$ helm show readme wildfly/wildfly

Get the URL of the route to the deployment.

$ oc get route jaxrs-jwt -o jsonpath="{.spec.host}"

Access the application in your web browser using the displayed URL.

Note

The Maven profile named openshift is used by the Helm chart to provision the server with the quickstart deployed on the root web context, and thus the application should be accessed with the URL without the /jaxrs-jwt path segment after HOST:PORT.

Run the Integration Tests with OpenShift

The integration tests included with this quickstart, which verify that the quickstart runs correctly, may also be run with the quickstart running on OpenShift.

Note

The integration tests expect a deployed application, so make sure you have deployed the quickstart on OpenShift before you begin.

Run the integration tests using the following command to run the verify goal with the integration-testing profile activated and the proper URL:

$ mvn verify -Pintegration-testing -Dserver.host=https://$(oc get route jaxrs-jwt --template='{{ .spec.host }}') 
Note

The tests are using SSL to connect to the quickstart running on OpenShift. So you need the certificates to be trusted by the machine the tests are run from.

Undeploy the WildFly Source-to-Image (S2I) Quickstart from OpenShift with Helm Charts

$ helm uninstall jaxrs-jwt

Building and running the quickstart application with Kubernetes

Build the WildFly Quickstart to Kubernetes with Helm Charts

For Kubernetes, the build with Apache Maven uses an openshift Maven profile to provision a WildFly server, suitable for running on Kubernetes.

The server provisioning functionality is provided by the WildFly Maven Plugin, and you may find its configuration in the quickstart pom.xml:

        <profile>
            <id>openshift</id>
            <build>
                <plugins>
                    <plugin>
                        <groupId>org.wildfly.plugins</groupId>
                        <artifactId>wildfly-maven-plugin</artifactId>
                        <configuration>
                            <discover-provisioning-info>
                                <version>${version.server}</version>
                                <context>cloud</context>
                            </discover-provisioning-info>
                            <!--
                                The parent POM's 'openshift' profile renames the output archive to ROOT.war so that the
                                application is deployed in the root web context. Add ROOT.war to the server.
                            -->
                            <filename>ROOT.war</filename>
                            <add-ons>...</add-ons>
                        </configuration>
                        <executions>
                            <execution>
                                <goals>
                                    <goal>package</goal>
                                </goals>
                            </execution>
                        </executions>
                    </plugin>
                    ...
                </plugins>
            </build>
        </profile>

You may note that unlike the provisioned-server profile it uses the cloud context which enables a configuration tuned for Kubernetes environment.

The plugin uses WildFly Glow to discover the feature packs and layers required to run the application, and provisions a server containing those layers.

If you get an error or the server is missing some functionality which cannot be auto-discovered, you can download the WildFly Glow CLI and run the following command to see more information about what add-ons are available:

wildfly-glow show-add-ons

Getting Started with Kubernetes and Helm Charts

This section contains the basic instructions to build and deploy this quickstart to Kubernetes using Helm Charts.

Install Kubernetes

In this example we are using Minikube as our Kubernetes provider. See the Minikube Getting Started guide for how to install it. After installing it, we start it with 4GB of memory.

minikube start --memory='4gb'

The above command should work if you have Docker installed on your machine. If, you are using Podman instead of Docker, you will also need to pass in --driver=podman, as covered in the Minikube documentation.

Once Minikube has started, we need to enable its registry since that is where we will push the image needed to deploy the quickstart, and where we will tell the Helm charts to download it from.

minikube addons enable registry

In order to be able to push images to the registry we need to make it accessible from outside Kubernetes. How we do this depends on your operating system. All the below examples will expose it at localhost:5000

# On Mac:
docker run --rm -it --network=host alpine ash -c "apk add socat && socat TCP-LISTEN:5000,reuseaddr,fork TCP:$(minikube ip):5000"

# On Linux:
kubectl port-forward --namespace kube-system service/registry 5000:80 &

# On Windows:
kubectl port-forward --namespace kube-system service/registry 5000:80
docker run --rm -it --network=host alpine ash -c "apk add socat && socat TCP-LISTEN:5000,reuseaddr,fork TCP:host.docker.internal:5000"

Prerequisites

  • Helm must be installed to deploy the backend on Kubernetes.

Once you have installed Helm, you need to add the repository that provides Helm Charts for WildFly.

$ helm repo add wildfly https://docs.wildfly.org/wildfly-charts/
"wildfly" has been added to your repositories
$ helm search repo wildfly
NAME                    CHART VERSION   APP VERSION     DESCRIPTION
wildfly/wildfly         ...             ...            Build and Deploy WildFly applications on OpenShift
wildfly/wildfly-common  ...             ...            A library chart for WildFly-based applications

Deploy the WildFly Source-to-Image (S2I) Quickstart to Kubernetes with Helm Charts

The backend will be built and deployed on Kubernetes with a Helm Chart for WildFly.

Navigate to the root directory of this quickstart and run the following commands:

mvn -Popenshift package wildfly:image

This will use the openshift Maven profile we saw earlier to build the application, and create a Docker image containing the WildFly server with the application deployed. The name of the image will be jaxrs-jwt.

Next we need to tag the image and make it available to Kubernetes. You can push it to a registry like quay.io. In this case we tag as localhost:5000/jaxrs-jwt:latest and push it to the internal registry in our Kubernetes instance:

# Tag the image
docker tag jaxrs-jwt localhost:5000/jaxrs-jwt:latest
# Push the image to the registry
docker push localhost:5000/jaxrs-jwt:latest

In the below call to helm install which deploys our application to Kubernetes, we are passing in some extra arguments to tweak the Helm build:

  • --set build.enabled=false - This turns off the s2i build for the Helm chart since Kubernetes, unlike OpenShift, does not have s2i. Instead, we are providing the image to use.

  • --set deploy.route.enabled=false - This disables route creation normally performed by the Helm chart. On Kubernetes we will use port-forwards instead to access our application, since routes are an OpenShift specific concept and thus not available on Kubernetes.

  • --set image.name="localhost:5000/jaxrs-jwt" - This tells the Helm chart to use the image we built, tagged and pushed to Kubernetes' internal registry above.

$ helm install jaxrs-jwt -f charts/helm.yaml wildfly/wildfly --wait --timeout=10m0s --set build.enabled=false --set deploy.route.enabled=false --set image.name="localhost:5000/jaxrs-jwt"
NAME: jaxrs-jwt
...
STATUS: deployed
REVISION: 1

This command will return once the application has successfully deployed. In case of a timeout, you can check the status of the application with the following command in another terminal:

kubectl get deployment jaxrs-jwt

The Helm Chart for this quickstart contains all the information to build an image from the source code using S2I on Java 17:

Unresolved directive in ../shared-doc/helm-deploy-project.adoc - include::/home/runner/work/quickstart/quickstart/jaxrs-jwt/charts/helm.yaml[]

This will create a new deployment on Kubernetes and deploy the application.

If you want to see all the configuration elements to customize your deployment you can use the following command:

$ helm show readme wildfly/wildfly

To be able to connect to our application running in Kubernetes from outside, we need to set up a port-forward to the jaxrs-jwt service created for us by the Helm chart.

This service will run on port 8080, and we set up the port forward to also run on port 8080:

kubectl port-forward service/jaxrs-jwt 8080:8080

The server can now be accessed via http://localhost:8080 from outside Kubernetes. Note that the command to create the port-forward will not return, so it is easiest to run this in a separate terminal.

Note

The Maven profile named openshift is used by the Helm chart to provision the server with the quickstart deployed on the root web context, and thus the application should be accessed with the URL without the /jaxrs-jwt path segment after HOST:PORT.

Run the Integration Tests with Kubernetes

The integration tests included with this quickstart, which verify that the quickstart runs correctly, may also be run with the quickstart running on Kubernetes.

Note

The integration tests expect a deployed application, so make sure you have deployed the quickstart on Kubernetes before you begin.

Run the integration tests using the following command to run the verify goal with the integration-testing profile activated and the proper URL:

$ mvn verify -Pintegration-testing -Dserver.host=http://localhost:8080 

Undeploy the WildFly Source-to-Image (S2I) Quickstart from Kubernetes with Helm Charts

$ helm uninstall jaxrs-jwt

To stop the port forward you created earlier use:

$ kubectl port-forward service/jaxrs-jwt 8080:8080